

Australian Government Department of Resources, Energy and Tourism

Heat Pump Water Heaters: Path to Harmonisation of Test Standards Session 1: The Project

Dr George Wilkenfeld George Wilkenfeld & Associates Beijing, 12 April 2013

Background to the Project

- What is a heat pump water heater (HPWH)
- Their energy-efficiency advantage
- Different types
- Trade in HPWHs
- Energy tests, standards and labels
- Value of harmonisation
- This project
- Aims of this Workshop

How they work

- Same principle as refrigerator or air conditioner
- Transfer energy from ambient medium to water in a storage tank
- Electricity used only in the compressor motor
 » In some designs there is backup resistance element
- This makes it a more efficient way to heat water
- Ambient heat source can be air, water or earth
 - » Most common type is air-to-water design
 - » This is the only type covered in our report

The Refrigeration Cycle

Unitary Heat Pump Water Heater

Unitary Heat Pump Water Heater

May be designed to be installed outside, inside or with ducted air Heat exchanger may be wrap-around or immersion coil

Split Heat Pump Water Heater

Storage tank (with heat exchanger)

Markets and Trade

- HPWHs are manufactured in many places
- They are widely traded
- Energy efficiency is the main selling point so there is incentive to state highest possible value
- But there are different ways to test units and determine their energy efficiency
- Suppliers have to test to the standards required in all market where the product is sold
- This adds to costs and customer confusion and acts as a barrier to trade

This project – Supported by:

- CLASP Collaborative Labeling and Appliance Standards Program
- DRET Department of Resources, Energy and Tourism, Australia
- KTL Korea Testing Laboratory
- ICA International Copper Association
- APEC EGEE&C
 – Asia Pacific Economic Cooperation's Expert Group on Energy Efficiency and Conservation
- SEAD The Super-efficient Equipment and Appliance Deployment Initiative of the Clean Energy Ministerial

The project team

- George Wilkenfeld and Associates
- Energy Efficient Strategies (Lloyd Harrington)
- Thermal Design (Prof Graham Morrison)
- Waide Strategic Efficiency (Paul Waide, UK, Philippe Riviere – Armines, Paris)
- Experienced in energy efficiency policy, international standards issues, product testing, thermal performance modelling

Objectives of project

Analyse current standards and test methods, with the aim of developing proposals for internationally-comparable energy efficiency test methods, metrics and efficiency classes for use in future efficiency policy measures

- » So far we have only considered test methods and metrics
- » Have a lot to solve before we can consider efficiency classes (eg COPS indicating low, med, high eff)

Stages

- Analyse existing HPWH test standards done
- Prepare Interim Report done
 » Will finalise after your feedback (by 31 May, please)
- Present report to this workshop of experts
- Analyse KTL test results
- Final report guidelines for internationally comparable test methods
- Present final report to second workshop
 » Place and date to be decided late 2013

Today's Workshop Program

- 1. Overview of international test standards
- 2. Preliminary findings from KTL testing
- 3. Experiences with testing by a major Chinese HPWH manufacturer
- 4. Some possible ways forward using selective physical tests and modelling
- 5. Discussions

Aims of Workshop

- Get your first reactions to Interim Report
- Help identify issues we have overlooked
- Seek your suggestions for other stakeholders who should be involved

» If so, please pass on the report to them

- To request your comments by 31 May, please
 - » To geosanna@ozemail.com.au