Super Efficient Dryer Initiative

Super Efficient Clothes Dryer Industry Summit

September 29, 2011

Who are we?

SEDI Core Stakeholders

Michael Russom

Efficiency Vermont

Jeff Harris

Northwest Energy Efficiency Alliance

Kerry Hogan

NYSERDA

Kari Reid

BC Hydro

SEDI Team

Chris Granda

Grasteu Associates (802) 922 7005 granda@grasteu.com

www.grasteu.com

Jay Wrobel

Midwest Energy Efficiency Alliance

Pedro Cabrera

NJCEP

Amanda Stevens / Peter Banwell

US EPA E_ERGY STAR

Keith Miller

National Grid

Chris Badger

Vermont Energy Investment Corp. (802) 658 6060 x1065 cbagder@veic.org www.veic.org

SEDI Team Roles

- Coordinate and connect global efficient clothes dryer expertise
- Define agenda for planning SEDI implementation
- Serve as an honest brokers between stakeholders, manufacturers and others
- Plan for transition from planning to implementation administration structure

SEDI Primary Goals

2010

Industry, Efficiency Programs and ENERGY STAR Collaboration

2011

Product Development & Field Data

2012

Pilots in N. American Market of Super Efficient Clothes Dryers

2013

ENERGY STAR & Full Market Launch

2020

50% Energy Reduction in Clothes Dryer Usage

What Do We Know?

- New technologies can reduce total clothes drying energy consumption in North America by up to 50%
- Energy efficiency programs are interested, and have resources
- ENERGY STAR is ready
- New products are needed

Resources Available

- Annual sales of 6 mil units in US and Canada
- Around 46 mil households now offered clothes washer incentives
- Many more were offered washer incentives before market shift
- 2010 appliance budgets around \$35 mil

Typical Drying Cycle

* NRDC/Ecos 2010 Evaluation of Clothes Dryer Savings Potential

From the EEPS perspective

Screening Inputs

Primary Per Unit Savings Electric Dryer kW Base unit 5.00 kW kW Efficient Dryer 2.00 kW kWh Base unit 775 kWh kWh Efficient Dryer 370 kWh

Secondary Heating Savings		Jurisdiction Level Inputs		
Heating MMBTU saved 0.18 MMBtu (from no venting)		Domestic Heating Fuel Mix:		
Electric	9.28 kWh	Electric 17.00%		
Propane	0.007 MMBtu	Propane 3.00%		
Natural Gas	0.111 MMBtu	Natural Gas 51.00%		
Oil	0.051 MMBtu	Oil <u>22.00%</u>		
Kerosene	0.005 MMBtu	Kerosene 2.00%		
Wood	0.023 MMBtu	Wood <u>5.00%</u>		
		100.00%		
kW vent 0.050 kW				
Secondary cooling savings				
Per unit cooling savings (reduced waste heat)	4.10 kWh	% homes with cooling? 83.00%		
kW cool 0.043 kW				
Total Savings				
Annual kWh Savings Annual kW savings	417.7 kWh 3.09 kW	Annual MMBtu Savings 0.196		

Other Assumptions						
Location	Middle Atlantic					
Baseline cost	\$ 564.00					
Efficient cost	\$ 969.00					
Installed Measure Cost	\$ 405.00					
Total Annual Cycles	283	cycles				
Total Annual Hours	283	hours				
Annual hours (heating)	187	hours				
Annual hours (cooling)	96	hours				
Measure Life	12	years				

Measure Screening Outputs				
(Societal Test 2009\$)				
PV of Net Benefits \$297				
Benefit-Cost Ratio 1.86				
Measure Benefits	\$642			
Measure Costs	\$346			
Gross Electric Benefits	\$583			
Fossil Fuel Benefits	\$21			
Total Resource Benefits	\$604			

MEASURE SCREENS WELL

Financial Assumptions						
Real Discount Rate		5.70%				
Future Inflation Rate		2.60%				
Base Yr for Discounting		2009				
Program year		2010				
Evaluation Period		12	yrs			
Avoided Costs						
	Winter Peak	Winter Off-	Summer	Summer Off		
	Energy	Peak Energy	Peak Energy	Peak Energy		
	\$/kWh	\$/kWh	\$/kWh	\$/kWh		
2010	0.106	0.077	0.107	0.079		

Loadshape					
Winter Peak Energy	Winter Off- Peak Energy	Summer Peak Energy	Summer Off- Peak Energy	Winter Coincident Peak	Summer Coincident Peak
42.0%	28.8%	16.9%	12.3%	4.4%	3.3%
Winter Peak Energy: 6AM - 10PM, weekdays, October to May; Winter Off-Peak Energy: 10PM - 6AM, weekdays, all weekend hours, October to May; Summer Peak Energy: 6AM - 10PM, weekdays, June to September; Summer Off-Peak Energy: 10PM - 6AM weekdays, all weekend hours, June to September.					
Summer Gen. Capacity: 1PM-5PM, weekday, non-holiday, June-August Winter Gen. Capacity: 5PM-7PM, weekday, non-holiday, December-January				nuary	

Why Can SEDI Do?

- Educate program providers about new super efficient clothes dryer technologies
- Help to perform cost-benefit analyses
- Share market research
- Help to coordinate program requirements and incentives

SEDI So Far...

- 1. 2010/2011 Funding by NJCEP
- 2. Research followed by Market Potential Report
- 3. Draft program design
- 4. Stakeholder Coordination
 - 2010 Regional Stakeholder Meetings
 - 2010 ENERGY STAR Partner Meeting
 - 2011 Industry Summit
 - 2011 ENERGY STAR Partner Meeting

Manufacturer Goals?

- Strong consumer demand for new products
- Recognition of SEDI compliant models through ENERGY STAR
- Consistent and sustained marketing and incentive support for SEDI-compliant dryer models
- Consistent technical specifications and test procedures across IEC, DOE, ENERGY STAR and NRCan

New Jersey Board of Public Utilities

Manufacturer Roles

- Design SEDI implementation plan
 - Choose SEDI administration mechanism
 - Set efficiency targets
 - Choose incentive and marketing approaches
- Support SEDI Implementation
 - Support product pilot testing
 - Apply retail price incentives
 - Provide coordinated marketing
- Support SEDI Evaluation

Short-term SEDI Project Goals

- A high efficiency bar for new clothes dryer technology (ENERGY Emerging Tech Award)
- Strong support from efficiency programs, manufacturers, government and others
- The SEDI implementation program plan written into efficiency program residential program budgets for 2011, and complying products available by 2012

What Does Industry Want?

- Product financial incentives?
 - Upstream, retailer and customer
 - Dryer recycling campaign
- Marketing financial incentives?
 - Co-op marketing funds
 - Independent complementary campaign
- Marketing non-financial incentives?
 - Institutional co-marketing
 - Community-based social marketing
- Other?

Next Steps

- Become a SEDI Industry Stakeholder
 - Help shape the SEDI efficiency target and program design
 - Research and pilot testing in 2011/2012

- Plan for 2012-2013
 - Retail price incentives
 - Marketing
 - Bulk purchase

Contacts

Chris Granda

Grasteu Associates (802) 922 7005 granda@grasteu.com

www.grasteu.com

Chris Badger

Vermont Energy Investment Corp. (802) 658 6060 x1065 cbagder@veic.org

www.veic.org

